# SLAC ILC Program & Beam Parameters & Snowmass Planning

Fermilab March 23<sup>rd</sup>, 2005

# **SLAC ILC Program**

- Program for FY05/FY06 has six main elements
  - Electron and Positron sources
  - Damping rings
  - Beam Delivery System and Interaction Region
  - Overall design: Beam parameters, Optics, Emittance preservation,
     Stability/alignment, Instrumentation, Availability, MPS, and
     Operational issues
  - Conventional construction implications and site development
  - Linac rf technology
    - klystrons, modulators, rf distribution, and possibly couplers
    - Wakefields and cavity optimization
    - Not SC Cavity fabrication

# **Major Test Facilities**

#### NLCTA

- Complete X-band program
- Create new L-band rf Test Facility
  - Test klystron and modulators for ILC
  - Test normal conducting structures for e+/e- sources
  - Construct coupler test facility
- Facilities also available in Klystron Test Lab

#### End Station A

- Study Interaction Region issues and instrumentation
- Mockup of full IR

#### • ATF-2

- Test BDS using very low emittance beam
- Utilize other test facilities around the world (TTF, SMTF, STF, ATF)

# **System Design**

#### Extensive simulation of sub-systems

 Balance emittance budgets and specify system tolerances → impact on overall beam parameters

#### Consider operational issues

- Design for availability and work on detailed models → big impact on layouts and configuration but hard to quantify
- Develop beam tuning algorithms → specify beam instrumentation requirements and layout
- Consider high-level controls software requirements (applications)
   for beam control → specify control system requirements

#### Develop Machine Protection Scenarios

- Specify active and sacrificial protection systems
- Specify beam dumps and beam tuning stations

# **Electron and Positron Source**

#### Electron source

- Continuing photocathode development
- Creating space to begin laser and gun development
- Need to start design simulations

#### Positron source (program with LLNL)

- Studying target design for undulator, conventional, and Compton sources
  - Radiation damage
  - Thermal shock / beam damage
  - Engineering issues (high rotation speed, remote handling)
- NC capture structure design and fabrication
- Capture and optics studies
- Complete E-166 polarized positron production (spring 2005)

# **Damping Rings**

- Damping ring design (program with LBNL)
  - Optics and tuning studies
  - Collective effects
  - Bunch compressor design
- SEY Studies (program with LBNL)
  - Laboratory measurements in PEL
  - Building three chambers for PEP-II installation to verify solutions

#### ATF at KEK

- Instrumentation (NanoBPM, laser wires, optical anchor)
- Beam studies (ORM, BBA, FBII, Wiggler)
- ATF Kicker replacement
- ATF stripline kicker development
- FONT/Feather

## **Electron Cloud Simulations**



Electron density in units of e m<sup>3</sup> as a function of time for an arc bend in the 6km DR option assuming a beam pipe radius 22mm and including an antechamber design (full height h=10mm).



# **SEY Studies in PEP LER**

# **Beam Delivery System**

- Optics design and layout (program with UK groups)
  - Study variations of BDS with different crossing angles, collimation systems, L\*, etc → understand tradeoffs
- ATF-2 at KEK
  - Demonstration of new FFS using ATF beam
  - Proposal is being assembled detailed contributions to be defined
- Specialty magnets (program with BNL)
  - SC final quadrupoles are being prototyped at BNL
- ESA Test Facility
  - MDI instrumentation studies, collimator wakefield studies
  - Construct IR mock-up



# **BDS Design (with UK groups)**

- Looking at 20 mrad and near-head-on crossing cases
  - Developed 20 mrad design based on NLC design
  - Developed a 2 mrad design with extraction using specialty





- Comparing collimation system performance with passive system and a consumable system (similar to NLC)
  - Studies are being done at SLAC, UK, and FNAL
  - Initial results show comparable performance

# **Linac Design**

- Quadrupole alignment
  - Use a SC linac quadrupole from DESY to study shunting alignment ability – very important to achieve desired tolerances
  - Continue program for NC quadrupoles
- BPM tests (program with TTF, ATF and LCLS)
  - Develop and test high resolution BPMs
- Laser wire (program at ATF and PETRA3)
  - Work with other groups to test high resolution laser wires
- Cavity diagnostics (program at TTF)
  - Add HOM detectors to SC cavities at TTF to determine beamcavity location – very important especially for high shunt impedance cavities with small aperture
- Measure vibration due to SC cryogenic equipment
  - Important for conventional layout and BDIR



# **Superconducting Quadrupole**

- Beam-based alignment in the TDR assumed use of 'Dispersion-Free Steering'
  - Method is sensitive to 'systematic' errors
  - The technique as proposed was never made operate near expectations in the SLC
  - An implementation at LEP reduced the 'effectiveness' by 4~5
- Quadrupole shunting is possibly a more robust technique
  - Main source of systematic error is motion of the magnetic center
- Measure the center motion with a prototype SC quad



# **Cavity HOM Measurements**

#### Understanding HOM signals from TTF

- Instrumentation used to measure HOMs in the TTF cavities
- Analysis was complicated because timing system was noisy
- Seem to achieve resolutions at the 16 micron level
- Questions about relative alignment of modes
- Potential to be very useful, especially for LL cavities





## **Wakefield Calculations**

- Extensive 3-D modeling of the TESLA and the new Low-Loss SC cavity wakefields
  - Big computation: 768 processors and requires 300 GB memory
  - Mode rotation may be an important source of jitter
    - Need to understand if this is mostly systematic due to the coupler orientation or due to fabrication errors
    - Huge effect if it is systematic



- New Low Loss cavities have lower cryoloads but higher wakes
  - Big impact on design → may make 35 or 40 MV/m possible
  - Need to understand the wakefield implications



# W<sub>1</sub> Mode Rotation

Separation of the dipole mode frequencies at TTF implies

strong X-Y coupling

 Design of damping ring extract, magnet supports, etc all have much looser tolerances on horizontal jitter

 Long-range wakefield could couple horizontal jitter into the vertical place

 Need to understand if these are systematic (couplers) or random (fabrication errors) Phase Space at end of Linac Y (norm.)

Simulation assuming random errors

with 400 um initial X motion



## **Modulators**

- ILC Baseline is essentially FNAL/DESY/PPT modulator
  - Single switch with bouncer circuit and 12:1 transformer
  - Efficiency is pretty good; reliability uncertain; transformer is large and stray fields may impact the damping ring
- SLAC effort is evaluating options
  - Receiving an SNS power converter-modulator which should have good efficiency
  - Building Marx generator style which should provide similar efficiency and 100% availability
  - Building switch for FNAL bouncer-style modulator
  - Working with Diversified Technologies in SBIR program to test another series-switch modulator



## **Marx Generator Modulator**

#### Stack of 12 kV units

#### Pros

- Uses emerging technology
- Modular design for longer
   MTBF and shorter MTTR
- No oil; compact unit
- No magnetic core
- Finer waveform control

#### Cons

- Uses emerging technology
- IGBT controls floats at high voltage during the pulse
- DC power flow must be isolated
- Timing signals must cross high voltage gradients



# **Klystrons**

- Three industrial vendors for 'baseline' 10MW MBK tubes
  - Still very little real experience with multi-beam klystrons
  - Thales has delivered two refurbished tubes to DESY
  - CPI 10MW tube was accepted by DESY may come to SLAC later
  - Toshiba 10MW tube is still under test
- Four elements to SLAC program
  - Develop L-band sheet beam klystron
  - Study klystron / modulator options
    - More conservative 5MW tube or lower power PPM tubes
    - Decide which (if any) of these to pursue further
  - Buy L-band rf power at SLAC (needed for experience and other elements of program)
  - Possibly work with DESY and CPI on CPI 10 MW tube



# **Sheet Beam Klystron**

- Exploring a sheet beam klystron as an alternate to the MBK tubes → significant cost reduction
  - High efficiency design using flat beams instead of 6 beamlets
  - Smaller with simpler focusing, cavities, and cathodes
  - Intrinsically 3-D design however the tools exist these days
  - No experience with sheet beam tubes
    - Building a W-band tube using external funding





# Other RF Topics

- Large number of ideas and requests for help
  - Constructing an SC 'materials' test facility
  - Studying TTF3 coupler designs and limitations
  - Looking at new approaches for the rf distribution that would reduce the number of components



- Considering a 'coupler' test facility in ESB which would model a loaded SC cavity using normal conducting technology
- Working on concepts for new circulators

# **End Station B Program**

- Complete X-band program at NLCTA
  - Test CERN structure and other gradient studies
  - Test active switching technology
  - Expect to decommission 8-pac modulator this year
- Start construction of an L-band test facility → next slides
- Create facility to construct prototype collimators for the LHC
  - Adaptation of NLC consumable collimator technology to allow the LHC to reach design luminosity
- Support E-163 laser acceleration experiment



# **ESB L-Band Test Facility**

- Build L-band test facility in ESB
  - Test modulators and klystrons
  - Test NC accelerator structures and couplers





# **ESB L-Band Test Facility**

- Modulator will be delivered from SNS this summer.
- Scrounging klystron parts from SDI/Anthrax/etc programs
- Buying 5 MW tube from Thales (1 year delivery)







# **Normal Conducting Structure**

- Proposed Structure Design for Positron Source with Mechanical Simplicity, effective cooling and Low Pulsed Heating:
  - Capture sections: Simple π mode short SW sections
  - Pre-Acceleration: High phase advance TW structures
- Working Progress:
  - Preliminary design for both SW and TW structures
  - Electrical and cooling design for a 5-cell SW structure
  - Ready to start mechanical design

| Cell Number               | 5           |  |  |
|---------------------------|-------------|--|--|
| Aperture 2a               | 60 mm       |  |  |
| Disk thickness            | 18 mm       |  |  |
| Q                         | 29700       |  |  |
| Shunt impedance r         | 34.3 MΩ/m   |  |  |
| RF Pd at 15 MV/m          | 3.6 kW/cell |  |  |
| Particle Pd               | 6.2 kW/cell |  |  |
| ΔT (Average/Transient) °C | 3.1 / 0.8   |  |  |







## **End Station A**

## Significant international interest





## ATF-2 at KEK

#### ATF-2 would be BDS test

S-band Linac

High Energy Accelerators Research Organization (KEK)

- Follow-on to FFTB
- New FFS optics
- Operational issues

# ATF-II-ff LAYOUT

180 MA-A



 $\delta \epsilon / p_{\theta} c = 0$ .

Table name = TWISS

# Reasons to develop the ATF-2

- Many reasons to develop the ATF-2
  - Luminosity issues will be extremely challenging in the LC
    - Likely more challenging than achieving the beam energy
  - Complete FFTB studies
    - FFTB never demonstrated routine operation of FFS
    - Need to implement full feedback control and optimization
    - Operate with ILC like bunch train and demonstrate IP feedback
    - Operate with stable low emittance beam from ATF DR
  - Provide demonstration and experience concurrent with ILC construction
    - FFTB experience will be over 15 years old
    - Train new generation of physicists
    - Provide a visible test facility for project reviewers and sponsors



# **ILC Budget**

#### FY05 DOE budget is 22.7 M\$

- 16.2 M\$ to SLAC

| Source                   | M\$   |
|--------------------------|-------|
| DOE ILC Program          | +15.2 |
| DOE SLAC Operations      | +0.5  |
| US-Japan Program         | +0.85 |
| Xfers to LLNL, LBNL, BNL | -1.9  |
| SLAC indirect overhead   | -3.01 |
| <b>SLAC Direct funds</b> | 11.6  |
| SLAC Labor               | 8.4   |
| SLAC M&S / Shop          | 3.2   |

## FY06 DOE budget is 25 M\$

- Distribution is unknown
- Developing a detailed plan for FY06 based on 16.2 M\$
- Working with Robin Staffin and Barry Barish to clarify this

# **Summary**

- Last few months have been 'interesting'
  - Technology choice was difficult
  - Major accident
  - Budget shortfall
- Very exciting strong program addressing most of the design issues
  - SLAC program addresses 14 of the 15 "R2" items identified by the 2003 TRC report as well as many additional problems
    - FY05 Program description will be posted on the ILC web site
    - FY06 Program description is being put together
- Program is focused on overall accelerator design issues as well as a few technology development concepts



#### **TESLA TDR Parameters**

peak luminosity

$$3 \times 10^{34}$$



parameter space

- 3×10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> peak achievable
- Possible due to very high beam-beam disruption  $(D_v)$
- Well into kink-instability regime (unstable)
- Little head room to play with



## **ILC Parameters**

#### peak luminosity

$$2 \times 10^{34}$$



parameter space

- Define baseline at relaxed goal of 2×10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - consistent with WWS 500fb<sup>-1</sup> in first 4 years
- Now have several possible parameter sets (parameter 'plane')
- Operational flexibility
- Sub-system experts to evaluate trade-offs between relevant parameters

Slides from Nick Walker, LCWS 2005



## **ILC Parameters**

## Suggested ILC Beam Parameter Range

by Tor Raubenheimer (SLAC)

available from:

http://www-project.slac.stanford.edu/ilc/

http://ilc.desy.de

http://...

#### parameters discussion forum:

http://www-project.slac.stanford.edu/ilc/discussion/Default.htm

This document intended to provoke <u>your</u> feedback and comment!



# **Parameter Plane**

|                                    |                   | nom      | low N    | lrg Y  | low P    |
|------------------------------------|-------------------|----------|----------|--------|----------|
| N                                  | ×10 <sup>10</sup> | 2        | 1        | 2      | 2        |
| $n_b$                              |                   | 2820     | 5640     | 2820   | 1330     |
| $\mathcal{E}_{x,y}$                | μm, nm            | 9.6, 40  | 10, 30   | 12, 80 | 10, 35   |
| $\beta_{x,y}$                      | cm, mm            | 2, 0.4   | 1.2, 0.2 | 1, 0.4 | 1, 0.2   |
| $\sigma_{x,y}$                     | nm                | 543, 5.7 | 495, 3.5 | 495, 8 | 452, 3.8 |
| $D_{y}$                            |                   | 18.5     | 10       | 28.6   | 27       |
| $\delta_{\!\scriptscriptstyle BS}$ | %                 | 2.2      | 1.8      | 2.4    | 5.7      |
| $\sigma_{\!_{\!z}}$                | μm                | 300      | 150      | 500    | 200      |
| $P_{beam}$                         | MW                | 11       | 11       | 11     | 5.3      |
| L                                  | ×10 <sup>34</sup> | 2        | 2        | 2      | 2        |

Range of parameters design to achieve  $2 \times 10^{34}$ 



# **Pushing the Luminosity Envelope**

|                                    |                   | nom      | low N    | lrg Y  | low P    | High L   |
|------------------------------------|-------------------|----------|----------|--------|----------|----------|
| N                                  | ×10 <sup>10</sup> | 2        | 1        | 2      | 2        | 2        |
| $n_b$                              |                   | 2820     | 5640     | 2820   | 1330     | 2820     |
| $\mathcal{E}_{x,y}$                | μm, nm            | 9.6, 40  | 10, 30   | 12, 80 | 10, 35   | 10, 30   |
| $\beta_{x,y}$                      | cm, mm            | 2, 0.4   | 1.2, 0.2 | 1, 0.4 | 1, 0.2   | 1, 0.2   |
| $\sigma_{x,y}$                     | nm                | 543, 5.7 | 495, 3.5 | 495, 8 | 452, 3.8 | 452, 3.5 |
| $D_{y}$                            |                   | 18.5     | 10       | 28.6   | 27       | 22       |
| $\delta_{\!\scriptscriptstyle BS}$ | %                 | 2.2      | 1.8      | 2.4    | 5.7      | 7        |
| $\sigma_{\!z}$                     | μm                | 300      | 150      | 500    | 200      | 150      |
| $P_{beam}$                         | MW                | 11       | 11       | 11     | 5.3      | 11       |
| L                                  | ×10 <sup>34</sup> | 2        | 2        | 2      | 2        | 4.9!     |

## **Comments on Snowmass**

#### Goal

- Establish >80% of Baseline Configuration
- Path to resolving remaining issues by end of 2005
- R&D topics to support beyond the Baseline Configuration
- Documented Baseline Configuration and R&D plan by end of year

#### Concern

Many European and Asian colleagues cannot attend for 2 full weeks

#### Result

- First 5 days 2<sup>nd</sup> ILC Workshop → decide on configuration
- 2<sup>nd</sup> week detail the config, start work on remaining issues, detail the R&D topics
- Important to register now!
- Please plan to come for the full two weeks lots of important issues to work on during the second week